

Real-world Implementation of the Location Stack:

The Universal Location Framework

David Graumann
Intel Corporation

david.graumann@intel.com

Walter Lara
Intel Corporation

walter.lara@intel.com

Jeffrey Hightower
Univ. of Washington

Dep’t of Computer Science & Engineering
jeffro@cs.washington.edu

Gaetano Borriello
Univ. of Washington/
Intel Research Seattle

gaetano@cs.washington.edu

Abstract

Both the research community and developers in
industry have identified the need for a clearly defined
vocabulary and programming framework for location
technologies. A layered Location Stack that provides
appropriate abstractions, common terminology, and a
clear API has been proposed in the last edition of
WMCSA. This paper relates the experience gained in
applying the Location Stack abstractions to the design
and implementation of a location system using three
separate location technologies integrated in a wireless
computer. A single application interface, termed the
Universal Location Framework, is designed to
aggregate indoor, outdoor, and proximity sensor
technologies. Our focus is on how well partitioning
and parameter passing between the layers worked for
our purposes as well as identifying system
requirements not currently part of the stack. In
closing, we provide evidence in support of the Location
Stack’s usefulness and we make some recommendations
for its potential evolution.

1. Introduction

The Intel Universal Location Framework (ULF) is
our implementation of location-aware computing on
individual tablet, notebook, and handheld computers.
This paper relates our experiences building a real system
and the benefits realized by designing and thinking in
terms of the Location Stack. The Location Stack, shown
in Figure 1, is an existing six-layer design framework that
establishes clearly defined abstractions building from raw

sensor data up to context aware computing and activity
inferencing [1]. This partitioning was proposed in the last
edition of WMCSA after architectural review of several
existing location-aware systems. Using the Location
Stack as a guide, we establish a flexible framework
capable of utilizing plug-in location sensing technologies
that start or stop providing location data as the mobile
device moves through various environments. Our
primary focus is on the lowest three stack layers
comprised of sensor, measurement, and fusion
capabilities. We expose the Fusion layer directly to
applications interested in geometric location. We expect
that the additional layers (Arrangements, Contextual
Fusion, and Activities) can be built independently and
utilize the Fusion layer interfaces we provide. (See [1]
for definitions and references to research on the upper
layers).

Figure 1. Location Stack.

Our design must meet the real needs of both the
platform hardware and third-party applications. We
identify three design criteria. First, we must provide a
uniform location interface to applications allowing both
push and pull access to location information. The API
must be technology neutral yet provide access to low-
level details if desired. Second, handoff between sensor
technologies and simultaneous fusion of measurements
from multiple sensor technologies must be possible.
Finally, it should be easy to extend support to new
location technologies without redesign and, most
importantly, without modification of application code.
Our prototypes are built on tablet computers with Intel®
Centrino™ mobile technology and demonstrated in real-
time using custom maps of our building and surrounding
campus. We use three sensor technologies: GPS, 802.11
indoor positioning, and UC Berkeley sensor motes as
proximity beacons. This collection of sensors enables a
range of realistic configurations and environments
including indoor sensing, outdoor sensing, and both
hierarchical and geographical handoff between location
sensing technologies. GPS provides outdoor location
when the device is in view of the sky. 802.11 positioning
provides coarse location indoors, in courtyards, and
occasionally on city streets. The UC Berkeley motes are
used as a flexible radio capable of mimicking a
Bluetooth™ proximity sensor or providing crude GPRS –
like location information. We primarily configured the
motes to represent 10ft range Bluetooth™ proximity
sensors.

Figure 2. Demonstration platform.

To meet our goals, we implement the bottom three

abstraction layers of the Location Stack: Sensors,
Measurements, and Fusion. The Sensor layer
encapsulates drivers to extract data from sensing
hardware. The Measurements layer abstracts this raw
sensor data into a common set of measurement types such
as distance, angle, and velocity. The Fusion layer
probabilistically merges measurements into a dynamic

representation of an object’s location and presents a
uniform interface to this location information for higher-
level layers. We expose the Fusion layer interface (with a
few embellishments) directly to applications. As we built
this system it became clear that we needed to deal with
several real-world issues introduced by our selection of
location sensing devices. For example, we have both
sophisticated and simple sensor types. GPS units contain
a complete navigation system while the UC Berkeley
motes we used as proximity sensors provide just an ID
value in a radio message. Between these two extremes lie
802.11 positioning technologies which can behave as
simple proximity sensors or provide coarse real-time
navigation. Looking beyond individual sensor integration,
this effort has forced us to address implications on
security, privacy, and real-time streaming as they relate to
the Location Stack abstractions.

2. Applying location abstractions to ULF

We use the Location Stack abstractions to guide our
design and integration of the three sensor technologies
into the Universal Location Framework. Our internal
canonical measurement representation consists of WGS-
84 [2] latitude, longitude, altitude, ground velocity,
heading from true north, elliptical arch or polygonal
uncertainty along the earth’s local tangential plane, a
separate uncertainty for elevation, the technology type,
and a timestamp. All location fixes are presented to the
fusion layer in these terms. The two uncertainty values
provide a flexible method to describe a location fix’s
horizontal error. The elliptical arch can describe a circle,
ellipse, or sector. The polygonal shape is a list of location
points with the last location tying back to the first. One
of the two uncertainty descriptors in conjunction with the
other location parameters completely describes the fusible
location fix. Our fusion algorithm handles these complex
shapes. The following sections relate the issues
encountered integrating each technology under these
design choices.

2.1 Global Positioning System stack integration

GPS is the most sophisticated sensing device we
used. GPS units contain a complete navigation system
capable of providing latitude, longitude, altitude, heading,
velocity, highly accurate time, waypoints, and several
variations of location uncertainty. This information is
provided as a serial ASCII sentence defined by the
NMEA standard [3] or a proprietary binary format. Their
internal capabilities directly fulfill the requirements of the
Sensor and Measurements layers of the Stack excluding

the simple transformation into our chosen canonical
measurement representation.

GPS

Mote

Location API handler (On-Timer, On-Demand, On-Sensor-Event)

Motion Model

Geometric Fusion

Speed & Heading
Derivation

S
en

so
r L

ay
er

M
ea

su
re

m
en

t L
ay

er
Fu

si
on

 L
ay

er
A

pp
lic

at
io

n

802.11
NDIS
Driver

Coordinate and Uncertainty Utilities

ID to
Location
Mapping

Local DB Lookup

Remote
Location
Server

Remote Server
Connectivity

Location Callback

Sensor Management

Location
Application

Location Application

Location
Applicati

on

Motion Model

Figure 3. Universal Location Framework block
diagram.

Though GPS integrated easily, the sophistication of
GPS devices presented other problems. Two cases
required interrogation of the GPS location report prior to
use at the Fusion layer. The uncertainties of a GPS
location report are described in multiple ways. In
addition to the required Dilution of Precision (DOP)
information, GPS vendors provide location uncertainty
values that are more indicative of the errors experienced
by the end-user. Unfortunately, these messages come
with proprietary headers and at different times than the
main location fix. In our implementation, we pay special
attention to the uncertainty of the report because it is
critical to the location’s geometric fusibility. We resolve
this by adding a bundling/parsing stage in the
measurement system to collect a complete GPS location
report before conversion to the canonical form. If the
proprietary message is not present or is not recognized
then we use the standard DOP. In this way, by

abstracting the ability to recognize proprietary error
messages within a configuration file, we are able to select
the best possible representation of uncertainty without a
priori knowledge of the brand of installed GPS device.

Along similar lines as the bundling stage, we need to
account for erroneous location fixes being reported by
GPS when operating in courtyards and transitioning from
outdoors to indoors. Many GPS units continue to provide
seemingly valid location reports even after complete loss
of satellite tracking. These reports were often erroneous,
especially when sharp turns were taken after satellite loss.
By monitoring the number of satellites used to determine
location as well as the number being tracked in the sky,
we can better determine how to utilize a single GPS
location fix in the presence of other sensing technologies.
In adherence to the abstraction layers, we chose to
propagate the sensor technology type, in this case GPS,
and the satellite information up through the
Measurements layer to the Fusion layer so that the fusion
layer can best determine the course of action to take.

Our integration of GPS establishes the Sensor layer
as the sole owner of the hardware driver. This is adequate
for our needs but presents a foreseeable problem for
Assisted GPS. Assisted GPS requires a mechanism to
“seed” the satellite acquisition engine with up-to-date
satellite information. However, the ability to relay
externally acquired data down the stack did not have an
obvious mapping to the abstractions.

2.2 Proximity sensor stack integration

We use UC Berkeley mote ID messaging, 802.11
MAC addresses, and received signal strength for
proximity sensing. All these technologies map easily into
the Location Stack model. Mote IDs and 802.11 MAC
addresses are used as look up keys into a locally cached
database. The database contains a record defining the
canonical location form. The mote database format was
intentionally defined to closely match the Bluetooth Local
Positioning Profile allowing us to easily replace this
sensor/database pair with a Bluetooth radio and a packet
received over the communication channel. In our case,
however, proximity sensors used in this way do not
provide velocity or heading, therefore, in addition to
passing the sensor type, these fields are set to N/A as
opposed to zero to clarify their use up at the fusion layer.

We ran across an interoperability issue when
interchanging proximity sensor client receivers. The
notion that one can interchange similar technologies at
the Sensor layer while maintaining the same
Measurements layer did not hold true in practice with our

first implementation of RF energy-based sensing devices.
It was determined that the measured receive energy from
either a mote or 802.11 access point is a function of the
receiver’s radio front-end circuitry. Due to component
variations, and even assuming all other conditions are
held constant, different sensors report the received signal
strength differently. This varies dramatically across
sensor vendors but also from unit to unit. Though this is
an issue with the specific technology, by placing the
burden on the Sensor layer to pass reference RF
sensitivity information to the Measurements layer a
normalized measurement database can be used in all
cases. Thus, we had to slightly expand the interface
between the Sensor and Measurements layers.

The static nature of proximity sensors presents an
opportunity to include the concept of an exclusion region
within which the client devices cannot reside. For
example a mote placed against the outside wall of a
second floor describes its uncertainty shape as a half
circle. This introduces a non-Gaussian uncertainty that
we termed an “embedded rail.” Since we have already
chosen methods to handle this descriptor at the Fusion
layer, the “embedded rail” is naturally reflected in the
final location resolution. This technique allows us finer
granularity control of the proximity sensor’s influence on
our location belief than simply describing their emitted
power pattern. In relating this to the Location Stack we
see that an “embedded rail” conceptually maps to
obstacles and object relationships residing at the
Arrangement layer which we did not include in our
design. This abstraction guidance does not seem
appropriate for our needs. However, the “embedded rail”
is very simple and does not obviate the need for a
complete description of obstacles and arrangement.

One requirement for geometrically fusing location
sensors is the need to resolve all location fixes to a
common coordinate system. This restricts our system’s
extensibility to sensors whose information can be mapped
to WGS-84 [2] positioning. For indoor positioning, this
is not necessarily the simplest or most natural coordinate
space. One simpler form is the horizontal plane
coincident with the building floor along with a floor
number. This information suffices to place the device on
a local map without consideration for the earth’s
curvature or true North. However, using this coordinate
system presents a problem when transitioning to outdoor
sensors that report location in world coordinates. Without
a means of relating the two coordinate systems a
discontinuity occurs at the Fusion layer.

2.3 802.11 Navigation stack integration

We implemented 802.11 location and navigation
using a state-of-the-art indoor positioning engine based
on analysis of the electromagnetic characteristics of
802.11 beacons similar to the classic RADAR system [4].
This technology requires a calibrated database of access
point signal characteristics, which in our case is stored on
an external server. The Sensor layer is implemented as an
NDIS™ driver interface while the Measurements layer
provides the remote server connection and callback
service (Figure 3). The server’s response describes
location in a local coordinate system that is converted to
WGS-84 within the Measurements layer. This
technology provides a location update every few seconds
barring network congestion, with an accuracy ranging
between 3-30 meters depending on access point
configurations.

This particular 802.11 location technology has no
provisioning for uncertainty, velocity, heading, or altitude
parameters necessary to completely describe a fusible
location. To compensate, we enhanced the Measurements
layer to derive the necessary information. Formal
evaluation revealed that the uncertainty is a function of
location and can vary between 3-30 meters. We were
unable to generalize these rules and simply use an
accuracy of 7 meters derived from empirical testing. A
Kalman filter was added to derive velocity and heading.
The acceleration/deceleration uncertainty handles
stationary to running conditions and the velocity noise
was set comparable to the location uncertainty. The
altitude was pre-assigned. These approximations are now
under evaluation. However, at a minimum it is preferred
to derive uncertainties directly from the sensor’s real-time
data.

Conveying location information between a server and
client introduces an important security concern that
proves difficult to adequately address. In a very
simplistic manner, we apply the first level of security by
tunneling the location content through a Virtual Private
Network (VPN). This limits visibility to within the
network but many more aspects must be considered that
are outside the scope of this paper.

Wireless LAN 802.11 technologies are notorious for
battery consumption and we seek to control power
management capabilities of 802.11 hardware from within
ULF. For example, if all running applications simply
need on-demand location reports, then the scan rate of the
802.11 can be considerably reduced or even turned off
until a location fix is requested. The Location Stack
abstractions do not provide us with insights on how to
best partition this or other similar mechanisms requiring
control of the underlying sensors. This is a common
weakness of many layered software models: they provide

robust separation of concerns but make it difficult to
handle crosscutting concerns.

2.4 Fusion layer implementation

The Fusion layer merges measurement reports into
the best “belief” of the device’s location. The core of our
implementation stems from ongoing research in robotics
and multi-sensor location estimation at the University of
Washington [5,6,7]. We do not discuss the details of
location estimation as it is outside the scope of this paper.
In those activities, as in ours, Bayesian filtering in the
specific form of particle filtering is used to manage
location uncertainty and establish an optimal estimate of
the true position. This algorithmic choice grants us the
opportunity to resolve the richly described probabilistic
models being provided by the Measurements layer (as
we’ve seen above, they are not simple Gaussian models).
After considering our particular sensors, we subdivided
our Fusion layer into three stages: Sensor Management,
Motion Modeling, and Particle Filtering.

Sensor Management interrogates the sensor type and
qualifies the location report before submission to the
other stages. Heuristics handle boundary cases including
stale location reports, unbalanced rapid reporting of
proximity sensors, and GPS reports derived from zero
satellites. In the absence of multiple sensing
technologies, any and all location fixes are used.
However, when multiple location technologies are
maturing a motion model and location belief, these
anomalies degrade the system. To perform this task we
keep track of the recently observed technologies, a
timestamp tightly coupled to the raw data acquisition
time, and some sensor specific details. We propagate
these parameters up the stack to the Fusion layer, because
here we have the vantage point of making informed
decisions about multiple technologies. The choice still
remains to move this information even farther up the
stack for the application to inspect.

The Motion Model is applied to the internal state of
the particle filter prior to the inclusion of the current
location fix and prior to reporting a location to an
application. We use a dynamic motion model that
includes velocity and heading as provided by the sensors.
When these observations are not available then the
motion is updated assuming a walking human stochastic
process. The use of motion estimation within this layer
has the added advantage of allowing an application to
obtain an accurate location fix asynchronously to the
underlying reports from the sensors.

As the final Fusion stage, a Bayesian filter
implemented as a particle filter is applied using the
probabilistic models described by the location descriptor
from the Measurements layer. The internal location
representation of the particle space occupies a Cartesian
coordinate system representing East-North-Up (ENU).
The space also contains dimensions for velocity and
heading. All measurement descriptors are aligned with
ENU coordinates. The particle filter elegantly
incorporates these irregular probability distributions into
its state [5,6,7].

2.5 Application interface stack integration

One of the main goals of our ULF design is to
insulate applications from the burden of direct interaction
with low-level location technologies. We realize this goal
by building our Application Programming Interface (API)
on top of the Fusion layer. The API provides location
information to the application in the form of location
reports consisting of: timestamp, position (as per WGS-
84), and uncertainty. In addition to reporting the
geometric shape descriptor extracted from the full
probability estimated by the particle filter, we provide a
simplistic location and accuracy value derived from the
average radius of the geometric shape created by the
distribution of particles.

Another goal of our design was to deliver location
information in a very flexible manner. Specifically, we
want our API to be able to provide location information
on-demand, periodically, or when new information is
available. To accommodate these requirements our API
provides the ability for the application to register interest
in location reports through a callback mechanism. We
created three different types of reports:

• Automatic. Generated whenever the Fusion layer
has new information as a result of an update
from the Measurements layer. This type enables
applications to implement trigger mechanisms.
For example, an application may be interested in
setting an alarm if the detected position is
outside a specific region.

• Manual. This report is triggered in response to a
query. This type is used by applications that
need to know the location only when the user
requests it.

• Periodic. Generated at a time interval specified
by the application. This type is most suitable for
applications requiring smooth real-time tracking
of the device’s location but can also be used for

slow background logging of position over long
periods of time.

We have identified the need for the API to support

waypoint functionality. This involves the caching and
comparing of location information within the stack. In
some cases these waypoints do not need to represent
physical locations in a coordinate system. Rather they
could represent an identifiable sensor configuration or
signature. An example of this is the latching of raw
802.11 access point MAC addresses, signal strengths,
signal-to-noise ratios, and energy fluctuations as a
uniquely discernable waypoint. This could be captured at
the Fusion layer but does not need a physical
representation or Measurements layer. We are currently
considering this design option for future inclusion as a
feature within the Location Stack.

3. Future work

Privacy and Security. We addressed privacy and security
in a mild manner within the Measurements layer and
recognize the need for a complete treatment at higher
levels of the stack and in more flexible ways. We believe
that users want to control who gets their location
information and when. The ability to breach the user’s
wishes by inappropriate use of their location is a potential
liability not addressed by the current stack. Advocating
interchangeable layers introduces additional avenues for
malicious programs to insert themselves into the system
and the identification of stack capabilities that address
this problem is ongoing.

Waypoint logging and triggering. The identification of a
location waypoint can be achieved with or without a final
geometric resolution. Unique characteristics of raw data
within the Sensor layer can be just as meaningful as
latitude, longitude, altitude when saving and comparing
similarities between two locations. Evolving the location
stack abstractions to encompass the creation,
preservation, and management of raw waypoints would
more completely describe the capabilities we contend are
necessary for the Universal Location Framework.

Common Coordinate Systems. For the particular
applications we are enabling on a notebook or handheld
computer the managing of multiple sensor technologies
with the Location Stack greatly benefits from the ability
to relate all coordinate systems to one another.
Promoting standards that allow the ability for local or
proprietary coordinate systems to be transformable into
one with universal acceptance could be beneficial to
deploying a location stack with interchangeable

technologies within the Sensor/Measurements layer. The
plausibility of this requirement remains an open question.

4. Conclusion

The Location Stack abstractions provided meaningful
guidance as we built a real-time demonstration platform
unifying three location technologies under a common
programming interface. We encountered several real-
world issues that have matured our thinking on future
directions for using the Location Stack on notebook,
tablet, and handheld computing devices. From a system
integration perspective, the Measurements layer requires
the most attention. The biggest stack disruption occurs
by placing remote server connectivity within the
Measurements layer, which brings to light many issues
surrounding stability and security. By designing this
layer with a common set of coordinate transformation
utilities, tightly coupled timestamps, and VPN tunneling,
we were able to establish a unified fusible data format
with a variety of plug-in technologies.

While the majority of our design maintains the Location
Stack abstractions, we deviate in a few regards. We
elected to implement the Fusion layer with knowledge of
the technology type and a few attributes to assure proper
removal of location anomalies. This choice does limit
our ability to freely exchange layers without a better
abstraction of technology behaviors, but at this time this
is not seen as overly restrictive. We worked outside of
the Location Stack abstractions when relaying
programmatic control parameters up and down the stack.
Because our design establishes the Universal Location
Framework as the sole owner of the sensor hardware
drivers, we have the extra burden of handling non-
geometric sensor information. Though these
requirements did not map directly to the abstractions
presented in the Location Stack, they were simple to
accommodate.

In summary, the Location Stack has proven itself in
providing a valuable set of abstractions for building
location-aware systems. Our success in enabling a tablet
with the ability to use three disparate location sensing
methods while leaving room for future evolution provides
evidence of this. In the process, we have identified
several new directions for development of our Universal
Location Framework (and the Location Stack on which it
is based). We look forward to investigating these new
issues in making location-aware systems practical and
ubiquitous.

5. References

[1] Jeffrey Hightower, Barry Brumitt, and Gaetano Borriello,
"The Location Stack: A Layered Model for Location in
Ubiquitous Computing", in Proceedings of the 4th IEEE
Workshop on Mobile Computing Systems & Applications
(WMCSA 2002), (Callicoon, NY), pp. 22-28, June 2002.

[2] EUROCONTROL: European Organization for the Safety of
Air Navigation, "World Geodetic System 1984, Implementation
Manual", Version 2.4, February 1998.

[3] National Marine Electronics Association, "NMEA 0183
Standard for Interfacing Marine Electronics Devices", Version
3.01, July 2000.

[4] Paramvir Bahl and Venkata Padmanabhan. "RADAR: An in-
building RF-based user location and tracking system", in
Proceedings of IEEE INFOCOM, volume 2, pages 775-784,
Tel-Aviv, Isreal, March 2000.

[5] Dieter Fox, Jeffrey Hightower, Lin Liao, Dirk Schulz, and
Gaetano Borriello, "Bayesian Filtering for Location
Estimation", in Pervasive Computing, vol. 2, no. 3, IEEE
Computer Society Press, July-September 2003.

[6] Dirk Schulz, Dieter Fox, and Jeffrey Hightower. "People
tracking with anonymous and id-sensors using rao-
blackwellised particle filters", in Proceedings of the Eighteenth
International Joint Conference on Artificial Intelligence (IJCAI),
2003.

[7] Cody Kwok, Dieter Fox, and Marina Meila. “Adaptive Real-
Time Particle Filters for Robot Localization”, in Proceeding of
the IEEE International Conference on Robotics and Automation
(ICRA), 2003

Centrino™ is a registered trademark of Intel Corporation. Other
names and brands may be claimed as the property of others.

