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Abstract 
 

Both the research community and developers in 
industry have identified the need for a clearly defined 
vocabulary and programming framework for location 
technologies.  A layered Location Stack that provides 
appropriate abstractions, common terminology, and a 
clear API has been proposed in the last edition of 
WMCSA.  This paper relates the experience gained in 
applying the Location Stack abstractions to the design 
and implementation of a location system using three 
separate location technologies integrated in a wireless 
computer.  A single application interface, termed the 
Universal Location Framework, is designed to 
aggregate indoor, outdoor, and proximity sensor 
technologies.  Our focus is on how well partitioning 
and parameter passing between the layers worked for 
our purposes as well as identifying system 
requirements not currently part of the stack.  In 
closing, we provide evidence in support of the Location 
Stack’s usefulness and we make some recommendations 
for its potential evolution. 
 

1. Introduction 
 

The Intel Universal Location Framework (ULF) is 
our implementation of location-aware computing on 
individual tablet, notebook, and handheld computers.  
This paper relates our experiences building a real system 
and the benefits realized by designing and thinking in 
terms of the Location Stack.  The Location Stack, shown 
in Figure 1, is an existing six-layer design framework that 
establishes clearly defined abstractions building from raw 

sensor data up to context aware computing and activity 
inferencing [1]. This partitioning was proposed in the last 
edition of WMCSA after architectural review of several 
existing location-aware systems.  Using the Location 
Stack as a guide, we establish a flexible framework 
capable of utilizing plug-in location sensing technologies 
that start or stop providing location data as the mobile 
device moves through various environments.  Our 
primary focus is on the lowest three stack layers 
comprised of sensor, measurement, and fusion 
capabilities.  We expose the Fusion layer directly to 
applications interested in geometric location.  We expect 
that the additional layers (Arrangements, Contextual 
Fusion, and Activities) can be built independently and 
utilize the Fusion layer interfaces we provide.  (See [1] 
for definitions and references to research on the upper 
layers). 

 
 

 
Figure 1.  Location Stack. 



Our design must meet the real needs of both the 
platform hardware and third-party applications.  We 
identify three design criteria.  First, we must provide a 
uniform location interface to applications allowing both 
push and pull access to location information.  The API 
must be technology neutral yet provide access to low-
level details if desired.  Second, handoff between sensor 
technologies and simultaneous fusion of measurements 
from multiple sensor technologies must be possible.  
Finally, it should be easy to extend support to new 
location technologies without redesign and, most 
importantly, without modification of application code.  
Our prototypes are built on tablet computers with Intel® 
Centrino™ mobile technology and demonstrated in real-
time using custom maps of our building and surrounding 
campus.  We use three sensor technologies: GPS, 802.11 
indoor positioning, and UC Berkeley sensor motes as 
proximity beacons. This collection of sensors enables a 
range of realistic configurations and environments 
including indoor sensing, outdoor sensing, and both 
hierarchical and geographical handoff between location 
sensing technologies. GPS provides outdoor location 
when the device is in view of the sky. 802.11 positioning 
provides coarse location indoors, in courtyards, and 
occasionally on city streets. The UC Berkeley motes are 
used as a flexible radio capable of mimicking a 
Bluetooth™ proximity sensor or providing crude GPRS –
like location information.  We primarily configured the 
motes to represent 10ft range Bluetooth™ proximity 
sensors.  

 

 
Figure 2. Demonstration platform. 

 
To meet our goals, we implement the bottom three 

abstraction layers of the Location Stack: Sensors, 
Measurements, and Fusion.  The Sensor layer 
encapsulates drivers to extract data from sensing 
hardware.  The Measurements layer abstracts this raw 
sensor data into a common set of measurement types such 
as distance, angle, and velocity.  The Fusion layer 
probabilistically merges measurements into a dynamic 

representation of an object’s location and presents a 
uniform interface to this location information for higher-
level layers.  We expose the Fusion layer interface (with a 
few embellishments) directly to applications.  As we built 
this system it became clear that we needed to deal with 
several real-world issues introduced by our selection of 
location sensing devices.  For example, we have both 
sophisticated and simple sensor types.  GPS units contain 
a complete navigation system while the UC Berkeley 
motes we used as proximity sensors provide just an ID 
value in a radio message.  Between these two extremes lie 
802.11 positioning technologies which can behave as 
simple proximity sensors or provide coarse real-time 
navigation. Looking beyond individual sensor integration, 
this effort has forced us to address implications on 
security, privacy, and real-time streaming as they relate to 
the Location Stack abstractions. 

 

2. Applying location abstractions to ULF 
 

We use the Location Stack abstractions to guide our 
design and integration of the three sensor technologies 
into the Universal Location Framework.  Our internal 
canonical measurement representation consists of WGS-
84 [2] latitude, longitude, altitude, ground velocity, 
heading from true north, elliptical arch or polygonal 
uncertainty along the earth’s local tangential plane, a 
separate uncertainty for elevation, the technology type, 
and a timestamp.  All location fixes are presented to the 
fusion layer in these terms.  The two uncertainty values 
provide a flexible method to describe a location fix’s 
horizontal error.  The elliptical arch can describe a circle, 
ellipse, or sector. The polygonal shape is a list of location 
points with the last location tying back to the first.  One 
of the two uncertainty descriptors in conjunction with the 
other location parameters completely describes the fusible 
location fix.  Our fusion algorithm handles these complex 
shapes.  The following sections relate the issues 
encountered integrating each technology under these 
design choices. 

2.1 Global Positioning System stack integration 
 

GPS is the most sophisticated sensing device we 
used. GPS units contain a complete navigation system 
capable of providing latitude, longitude, altitude, heading, 
velocity, highly accurate time, waypoints, and several 
variations of location uncertainty.  This information is 
provided as a serial ASCII sentence defined by the 
NMEA standard [3] or a proprietary binary format.  Their 
internal capabilities directly fulfill the requirements of the 
Sensor and Measurements layers of the Stack excluding 



the simple transformation into our chosen canonical 
measurement representation. 

 
 

GPS

Mote

Location API handler (On-Timer, On-Demand, On-Sensor-Event)

Motion  Model

Geometric  Fusion

Speed  &  Heading
Derivation

S
en

so
r L

ay
er

M
ea

su
re

m
en

t L
ay

er
Fu

si
on

 L
ay

er
A

pp
lic

at
io

n

802.11
NDIS
Driver

Coordinate  and  Uncertainty  Utilities

ID to
Location
Mapping

Local  DB  Lookup

Remote
Location
Server

Remote  Server
Connectivity

Location  Callback

Sensor  Management

Location
Application

Location  Application

Location
Applicati

on

Motion  Model

 
 

Figure 3.  Universal Location Framework block 
diagram. 

 
 

Though GPS integrated easily, the sophistication of 
GPS devices presented other problems.  Two cases 
required interrogation of the GPS location report prior to 
use at the Fusion layer.  The uncertainties of a GPS 
location report are described in multiple ways.  In 
addition to the required Dilution of Precision (DOP) 
information, GPS vendors provide location uncertainty 
values that are more indicative of the errors experienced 
by the end-user.  Unfortunately, these messages come 
with proprietary headers and at different times than the 
main location fix.  In our implementation, we pay special 
attention to the uncertainty of the report because it is 
critical to the location’s geometric fusibility.  We resolve 
this by adding a bundling/parsing stage in the 
measurement system to collect a complete GPS location 
report before conversion to the canonical form. If the 
proprietary message is not present or is not recognized 
then we use the standard DOP.  In this way, by 

abstracting the ability to recognize proprietary error 
messages within a configuration file, we are able to select 
the best possible representation of uncertainty without a 
priori knowledge of the brand of installed GPS device. 
 

Along similar lines as the bundling stage, we need to 
account for erroneous location fixes being reported by 
GPS when operating in courtyards and transitioning from 
outdoors to indoors.  Many GPS units continue to provide 
seemingly valid location reports even after complete loss 
of satellite tracking. These reports were often erroneous, 
especially when sharp turns were taken after satellite loss.   
By monitoring the number of satellites used to determine 
location as well as the number being tracked in the sky, 
we can better determine how to utilize a single GPS 
location fix in the presence of other sensing technologies.  
In adherence to the abstraction layers, we chose to 
propagate the sensor technology type, in this case GPS, 
and the satellite information up through the 
Measurements layer to the Fusion layer so that the fusion 
layer can best determine the course of action to take. 
 

Our integration of GPS establishes the Sensor layer 
as the sole owner of the hardware driver. This is adequate 
for our needs but presents a foreseeable problem for 
Assisted GPS. Assisted GPS requires a mechanism to 
“seed” the satellite acquisition engine with up-to-date 
satellite information.  However, the ability to relay 
externally acquired data down the stack did not have an 
obvious mapping to the abstractions. 
 

2.2 Proximity sensor stack integration 
 

We use UC Berkeley mote ID messaging, 802.11 
MAC addresses, and received signal strength for 
proximity sensing.  All these technologies map easily into 
the Location Stack model.  Mote IDs and 802.11 MAC 
addresses are used as look up keys into a locally cached 
database.  The database contains a record defining the 
canonical location form.  The mote database format was 
intentionally defined to closely match the Bluetooth Local 
Positioning Profile allowing us to easily replace this 
sensor/database pair with a Bluetooth radio and a packet 
received over the communication channel. In our case, 
however, proximity sensors used in this way do not 
provide velocity or heading, therefore, in addition to 
passing the sensor type, these fields are set to N/A as 
opposed to zero to clarify their use up at the fusion layer.  
 

We ran across an interoperability issue when 
interchanging proximity sensor client receivers.  The 
notion that one can interchange similar technologies at 
the Sensor layer while maintaining the same 
Measurements layer did not hold true in practice with our 



first implementation of RF energy-based sensing devices.  
It was determined that the measured receive energy from 
either a mote or 802.11 access point is a function of the 
receiver’s radio front-end circuitry.  Due to component 
variations, and even assuming all other conditions are 
held constant, different sensors report the received signal 
strength differently.  This varies dramatically across 
sensor vendors but also from unit to unit.  Though this is 
an issue with the specific technology, by placing the 
burden on the Sensor layer to pass reference RF 
sensitivity information to the Measurements layer a 
normalized measurement database can be used in all 
cases.  Thus, we had to slightly expand the interface 
between the Sensor and Measurements layers. 
 

The static nature of proximity sensors presents an 
opportunity to include the concept of an exclusion region 
within which the client devices cannot reside.  For 
example a mote placed against the outside wall of a 
second floor describes its uncertainty shape as a half 
circle.  This introduces a non-Gaussian uncertainty that 
we termed an “embedded rail.”  Since we have already 
chosen methods to handle this descriptor at the Fusion 
layer, the “embedded rail” is naturally reflected in the 
final location resolution.  This technique allows us finer 
granularity control of the proximity sensor’s influence on 
our location belief than simply describing their emitted 
power pattern.  In relating this to the Location Stack we 
see that an “embedded rail” conceptually maps to 
obstacles and object relationships residing at the 
Arrangement layer which we did not include in our 
design.  This abstraction guidance does not seem 
appropriate for our needs.  However, the “embedded rail” 
is very simple and does not obviate the need for a 
complete description of obstacles and arrangement.  
 

One requirement for geometrically fusing location 
sensors is the need to resolve all location fixes to a 
common coordinate system.  This restricts our system’s 
extensibility to sensors whose information can be mapped 
to WGS-84 [2] positioning.  For indoor positioning, this 
is not necessarily the simplest or most natural coordinate 
space.  One simpler form is the horizontal plane 
coincident with the building floor along with a floor 
number.  This information suffices to place the device on 
a local map without consideration for the earth’s 
curvature or true North.  However, using this coordinate 
system presents a problem when transitioning to outdoor 
sensors that report location in world coordinates.  Without 
a means of relating the two coordinate systems a 
discontinuity occurs at the Fusion layer. 
 

2.3  802.11 Navigation stack integration 
 

We implemented 802.11 location and navigation 
using a state-of-the-art indoor positioning engine based 
on analysis of the electromagnetic characteristics of 
802.11 beacons similar to the classic RADAR system [4].  
This technology requires a calibrated database of access 
point signal characteristics, which in our case is stored on 
an external server.  The Sensor layer is implemented as an 
NDIS™ driver interface while the Measurements layer 
provides the remote server connection and callback 
service (Figure 3).  The server’s response describes 
location in a local coordinate system that is converted to 
WGS-84 within the Measurements layer.  This 
technology provides a location update every few seconds 
barring network congestion, with an accuracy ranging 
between 3-30 meters depending on access point 
configurations. 
 

This particular 802.11 location technology has no 
provisioning for uncertainty, velocity, heading, or altitude 
parameters necessary to completely describe a fusible 
location.  To compensate, we enhanced the Measurements 
layer to derive the necessary information.  Formal 
evaluation revealed that the uncertainty is a function of 
location and can vary between 3-30 meters. We were 
unable to generalize these rules and simply use an 
accuracy of 7 meters derived from empirical testing.  A 
Kalman filter was added to derive velocity and heading. 
The acceleration/deceleration uncertainty handles 
stationary to running conditions and the velocity noise 
was set comparable to the location uncertainty.  The 
altitude was pre-assigned.  These approximations are now 
under evaluation. However, at a minimum it is preferred 
to derive uncertainties directly from the sensor’s real-time 
data. 
 

Conveying location information between a server and 
client introduces an important security concern that 
proves difficult to adequately address.  In a very 
simplistic manner, we apply the first level of security by 
tunneling the location content through a Virtual Private 
Network (VPN).  This limits visibility to within the 
network but many more aspects must be considered that 
are outside the scope of this paper. 
 

Wireless LAN 802.11 technologies are notorious for 
battery consumption and we seek to control power 
management capabilities of 802.11 hardware from within 
ULF.  For example, if all running applications simply 
need on-demand location reports, then the scan rate of the 
802.11 can be considerably reduced or even turned off 
until a location fix is requested.  The Location Stack 
abstractions do not provide us with insights on how to 
best partition this or other similar mechanisms requiring 
control of the underlying sensors.  This is a common 
weakness of many layered software models: they provide 



robust separation of concerns but make it difficult to 
handle crosscutting concerns.  
 

2.4 Fusion layer implementation 
 

The Fusion layer merges measurement reports into 
the best “belief” of the device’s location.  The core of our 
implementation stems from ongoing research in robotics 
and multi-sensor location estimation at the University of 
Washington [5,6,7].  We do not discuss the details of 
location estimation as it is outside the scope of this paper.  
In those activities, as in ours, Bayesian filtering in the 
specific form of particle filtering is used to manage 
location uncertainty and establish an optimal estimate of 
the true position.  This algorithmic choice grants us the 
opportunity to resolve the richly described probabilistic 
models being provided by the Measurements layer (as 
we’ve seen above, they are not simple Gaussian models).  
After considering our particular sensors, we subdivided 
our Fusion layer into three stages: Sensor Management, 
Motion Modeling, and Particle Filtering. 
 

Sensor Management interrogates the sensor type and 
qualifies the location report before submission to the 
other stages.  Heuristics handle boundary cases including 
stale location reports, unbalanced rapid reporting of 
proximity sensors, and GPS reports derived from zero 
satellites.  In the absence of multiple sensing 
technologies, any and all location fixes are used.  
However, when multiple location technologies are 
maturing a motion model and location belief, these 
anomalies degrade the system.  To perform this task we 
keep track of the recently observed technologies, a 
timestamp tightly coupled to the raw data acquisition 
time, and some sensor specific details.  We propagate 
these parameters up the stack to the Fusion layer, because 
here we have the vantage point of making informed 
decisions about multiple technologies.  The choice still 
remains to move this information even farther up the 
stack for the application to inspect.  
 

The Motion Model is applied to the internal state of 
the particle filter prior to the inclusion of the current 
location fix and prior to reporting a location to an 
application.  We use a dynamic motion model that 
includes velocity and heading as provided by the sensors.  
When these observations are not available then the 
motion is updated assuming a walking human stochastic 
process. The use of motion estimation within this layer 
has the added advantage of allowing an application to 
obtain an accurate location fix asynchronously to the 
underlying reports from the sensors.  
 

As the final Fusion stage, a Bayesian filter 
implemented as a particle filter is applied using the 
probabilistic models described by the location descriptor 
from the Measurements layer. The internal location 
representation of the particle space occupies a Cartesian 
coordinate system representing East-North-Up (ENU). 
The space also contains dimensions for velocity and 
heading.  All measurement descriptors are aligned with 
ENU coordinates. The particle filter elegantly 
incorporates these irregular probability distributions into 
its state [5,6,7].  
 

2.5 Application interface stack integration 
 

One of the main goals of our ULF design is to 
insulate applications from the burden of direct interaction 
with low-level location technologies.  We realize this goal 
by building our Application Programming Interface (API) 
on top of the Fusion layer.  The API provides location 
information to the application in the form of location 
reports consisting of: timestamp, position (as per WGS-
84), and uncertainty.  In addition to reporting the 
geometric shape descriptor extracted from the full 
probability estimated by the particle filter, we provide a 
simplistic location and accuracy value derived from the 
average radius of the geometric shape created by the 
distribution of particles. 
 

Another goal of our design was to deliver location 
information in a very flexible manner.  Specifically, we 
want our API to be able to provide location information 
on-demand, periodically, or when new information is 
available.  To accommodate these requirements our API 
provides the ability for the application to register interest 
in location reports through a callback mechanism.  We 
created three different types of reports: 
 

• Automatic. Generated whenever the Fusion layer 
has new information as a result of an update 
from the Measurements layer.  This type enables 
applications to implement trigger mechanisms.  
For example, an application may be interested in 
setting an alarm if the detected position is 
outside a specific region. 

• Manual.  This report is triggered in response to a 
query.  This type is used by applications that 
need to know the location only when the user 
requests it. 

• Periodic. Generated at a time interval specified 
by the application.  This type is most suitable for 
applications requiring smooth real-time tracking 
of the device’s location but can also be used for 



slow background logging of position over long 
periods of time. 

 
We have identified the need for the API to support 

waypoint functionality.  This involves the caching and 
comparing of location information within the stack.  In 
some cases these waypoints do not need to represent 
physical locations in a coordinate system.  Rather they 
could represent an identifiable sensor configuration or 
signature. An example of this is the latching of raw 
802.11 access point MAC addresses, signal strengths, 
signal-to-noise ratios, and energy fluctuations as a 
uniquely discernable waypoint.  This could be captured at 
the Fusion layer but does not need a physical 
representation or Measurements layer.  We are currently 
considering this design option for future inclusion as a 
feature within the Location Stack. 
 

3. Future work 
 
Privacy and Security.  We addressed privacy and security 
in a mild manner within the Measurements layer and 
recognize the need for a complete treatment at higher 
levels of the stack and in more flexible ways.  We believe 
that users want to control who gets their location 
information and when.  The ability to breach the user’s 
wishes by inappropriate use of their location is a potential 
liability not addressed by the current stack.  Advocating 
interchangeable layers introduces additional avenues for 
malicious programs to insert themselves into the system 
and the identification of stack capabilities that address 
this problem is ongoing. 
 
Waypoint logging and triggering.  The identification of a 
location waypoint can be achieved with or without a final 
geometric resolution.  Unique characteristics of raw data 
within the Sensor layer can be just as meaningful as 
latitude, longitude, altitude when saving and comparing 
similarities between two locations.  Evolving the location 
stack abstractions to encompass the creation, 
preservation, and management of raw waypoints would 
more completely describe the capabilities we contend are 
necessary for the Universal Location Framework. 
 
Common Coordinate Systems.  For the particular 
applications we are enabling on a notebook or handheld 
computer the managing of multiple sensor technologies 
with the Location Stack greatly benefits from the ability 
to relate all coordinate systems to one another.  
Promoting standards that allow the ability for local or 
proprietary coordinate systems to be transformable into 
one with universal acceptance could be beneficial to 
deploying a location stack with interchangeable 

technologies within the Sensor/Measurements layer.  The 
plausibility of this requirement remains an open question. 

4. Conclusion 
 

The Location Stack abstractions provided meaningful 
guidance as we built a real-time demonstration platform 
unifying three location technologies under a common 
programming interface.  We encountered several real-
world issues that have matured our thinking on future 
directions for using the Location Stack on notebook, 
tablet, and handheld computing devices.  From a system 
integration perspective, the Measurements layer requires 
the most attention.  The biggest stack disruption occurs 
by placing remote server connectivity within the 
Measurements layer, which brings to light many issues 
surrounding stability and security.  By designing this 
layer with a common set of coordinate transformation 
utilities, tightly coupled timestamps, and VPN tunneling, 
we were able to establish a unified fusible data format 
with a variety of plug-in technologies. 
 
While the majority of our design maintains the Location 
Stack abstractions, we deviate in a few regards.  We 
elected to implement the Fusion layer with knowledge of 
the technology type and a few attributes to assure proper 
removal of location anomalies.  This choice does limit 
our ability to freely exchange layers without a better 
abstraction of technology behaviors, but at this time this 
is not seen as overly restrictive.  We worked outside of 
the Location Stack abstractions when relaying 
programmatic control parameters up and down the stack.  
Because our design establishes the Universal Location 
Framework as the sole owner of the sensor hardware 
drivers, we have the extra burden of handling non-
geometric sensor information.  Though these 
requirements did not map directly to the abstractions 
presented in the Location Stack, they were simple to 
accommodate. 
 

In summary, the Location Stack has proven itself in 
providing a valuable set of abstractions for building 
location-aware systems.  Our success in enabling a tablet 
with the ability to use three disparate location sensing 
methods while leaving room for future evolution provides 
evidence of this.  In the process, we have identified 
several new directions for development of our Universal 
Location Framework (and the Location Stack on which it 
is based).  We look forward to investigating these new 
issues in making location-aware systems practical and 
ubiquitous. 
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